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Abstract
Previous research on the automatic acquisition of
selectional preference information has mainly fo-
cused on English and on the relation between verbs
and their direct objects. In this paper, we evalu-
ate the performance of models of selectional pref-
erences for German verbs and take into account not
only direct objects, but also subjects and preposi-
tional complements. A variety of parameter settings
are explored. The preference values are compared
to human judgments elicited in a magnitude estima-
tion experiment. The results indicate that there ex-
ist significant linear correlations between the human
judgments and different single algorithms, depend-
ing on the grammatical relation being observed.

1 Introduction
Selectional preferences are graded constraints that
a predicate imposes on its arguments. For exam-
ple, a verb likedrink typically takes an animate en-
tity as its subject and a drinkable entity as its ob-
ject. Selectional preferences have been studied in
the context of a variety of natural language process-
ing tasks, such as word-sense disambiguation (Mc-
Carthy et al., 2001), PP attachment ambiguity res-
olution (Li and Abe, 1998), parse ranking (Bikel,
2000), and the interpretation of compound nouns
(Lapata, 2000).

Results on the usefulness of preference knowl-
edge so far have been inconclusive: Resnik (1997)
and McCarthy et al. (2001) argue that selectional
preferences can not be the only means for word-
sense disambiguation; they only help when the tie
between predicate and argument is strong enough,
so coverage is limited. Bikel (2000) describes a
statistical model for simultaneous syntactic pars-
ing and generalized word-sense disambiguation. He
finds that integrating word sense information from
WordNet does not improve the parsing accuracy sig-
nificantly over a traditional parsing model.

In contrast to these task-based evaluations, the
present paper compares the computed selectional
preferences to human judgments obtained in a mag-
nitude estimation experiment over the world-wide
web. This approach is more direct than word-sense
disambiguation, which relies on the assumption that
models of selectional preferences have to infer the
appropriate semantic class and therefore perform
disambiguation as a side effect.

Furthermore, previous research on automatic se-
lectional preference acquisition has mainly focused
on English and on the relation between verbs and
their direct objects. In this study, we explore the
cross-linguistic applicability of the models by look-
ing at a set of German verbs, and take into account
not only direct objects, but also subjects and prepo-
sitional complements.

We implemented the following methods to ac-
quire selectional preference values: Co-occurrence
frequency, conditional probability, and three distinct
approaches that assign probabilities to the classes of
a noun ontology (in our case GermaNet (Hamp and
Feldweg, 1997)).

The selectional association metric (Resnik, 1993)
is based on the information-theoretic measure ofrel-
ative entropy, capturing the distance between two
probability distributions.

For the second class-based approach,tree cut
modelsare computed (Li and Abe, 1998). A tree
cut model is a horizontal cut through the noun hier-
archy which mirrors the selectional preferences of
a verb. The optimal cut is found by means of the
Minimum Description Length principle.

Third, we considered thesimilarity-classmea-
sure (Clark and Weir, 2002). The idea is to find
a suitable level of generalization for a noun by
traversing the ontology bottom-up, stopping when
the probabilities associated with the set of concepts
below a node and those of the siblings of that node
differ significantly. The resulting class is then used



to estimate a probability value for the noun.
The evaluation showed that there exist significant

linear correlations between the human judgments
and different single algorithms, depending on the
grammatical relation being observed. This indicates
that the approaches are indeed valid for a language
other than English and that they work for grammat-
ical relations other than direct object.

The remainder of this paper is organized as fol-
lows: In Section 2, we briefly review the methods
employed to compute selectional preference infor-
mation. Section 3 deals with the experiment that
we conducted to elicit human judgments for a set
of experimental stimuli for each of the grammatical
relations subject, direct object, and PP object. In
Section 4, we describe necessary adaptations to the
taxonomy and the parameter settings we explored
to model the judgments. Section 5 presents the re-
sults of the comparison between the human judg-
ments and the algorithms’ predictions. We discuss
the results in Section 6 and indicate topics for fur-
ther research in Section 7.

2 Methods for Selectional Preference
Acquisition

2.1 Co-occurrence Frequency
The co-occurrence frequency measuref (v, r,n) is
the number of times a nounn co-occurs with a
verb v in a grammatical relationr. For instance,
if water appears 25 times as the object ofdrink,
f (drink,obj,water) = 25.

2.2 Conditional Probability
The conditional probabilityp(n|v, r) of a nounn
given a verbv and a grammatical relationr is es-
timated by relative frequencies as follows:

P̂(n|v, r) =
P̂(v, r,n)
P̂(v, r)

=
f (v, r,n)/N
f (v, r)/N

=
f (v, r,n)
f (v, r)

(1)

Here f (v, r,n) is the same frequency count as in Sec-
tion 2.1; f (v, r) counts how oftenv andr co-occur,
andN is the total number of nouns observed as ar-
guments ofr.

For example, ifwateroccurs 25 times as the ob-
ject of drink, anddrink has 50 objects attested in
the corpus,P̂(water|drink,obj) = f (drink,obj,water)

f (drink,obj) =
25
50 = 0.5.

Equation (1) can be construed as a verb selecting
for a noun. An alternative is to have the argument
select for its predicate by measuring the conditional
probability P̂(v|r,n) of a verb given a grammatical
relation and a noun:

(2) P̂(v|r,n) =
f (v, r,n)
f (r,n)

2.3 Selectional Association
Resnik (1993) was the first to propose a model of
selectional preferences to quantify the semantic fit
of a particular semantic classc as an argument of a
verbv.

The preference model computes probability dis-
tributions over the classes of a hierarchy of a lexical
resource like WordNet or GermaNet. LetP(c) be
the overall distribution of classes, andP(c|v, r) the
probability distribution of argument classes in rela-
tion r to a particular verbv. The selectional pref-
erence strength S(v) of the verb is defined as the
relative entropy between these distributions:

(3) S(v) = ∑
c∈C

P(c|v, r) log
P(c|v, r)

P(c)

S(v) can be understood as the amount of infor-
mation the predicate carries about its arguments.
The greater the difference between the true dis-
tribution P(c|v, r) and the approximationP(c), the
greater is the cost of not taking the verb into ac-
count.

Selectional preference strength captures the re-
lationship between a verb and the entire argument
class hierarchy. Theselectional association Ais de-
fined between a verbv and aparticular classc:

(4) A(v, r,c) =
P(c|v, r) log P(c|v,r)

P(c)

S(v)

This measure quantifies the relative contribution of
classc to the overall selectional preference strength.
Selectional association values can be positive or
negative, expressing preference or dispreference of
the respective class.

The parameters of the underlying class-based
probability model are calculated via maximum like-
lihood estimation by normalizing the frequencies as
follows:

(5) P̂(c|v, r) =
f (v, r,c)
f (v, r)



The estimation ofP(c|v, r) would be a straightfor-
ward task if each word was always represented in
the taxonomy by a single concept or if we had a cor-
pus labeled explicitly with taxonomic information.
Lacking such a corpus we need to take into con-
sideration the fact that words in a taxonomy may
belong to more than one conceptual class. Counts
of verb-argument configurations are constructed for
each conceptual class by dividing the contribution
of the argument by the number of classes it belongs
to (Resnik, 1993):

(6) f̂ (v, r,c) = ∑
n∈syn(c)

f (v, r,n)
|cn(n)|

Here, syn(c) is the synset of a conceptc, i.e.,
the set of synonymous words which can be used
to denote the concept (e.g., syn(〈beverage 〉) =
{beverage, drink, drinkable, potable}), and cn(n) is
the set of concepts that can be denoted by nounn
(more formally, cn(n) = {c|n∈ syn(c)}).

2.4 Tree Cut Models
A different method to acquire selectional preference
information is proposed by Li and Abe (1998). Con-
ditional probability distributions are estimated for
tree cuts, partitions of words in a given hierarchy
tree. Each leaf node of the hierarchy stands for a
noun, and each internal node denotes a noun class,
representing all leaf nodes below it. A tree cut is a
set of nodes that covers all leaf nodes of the hierar-
chy tree.

A tree cut model Mis defined as a pair of a tree
cut Γ, which is a set of classesc1,c2, . . . ,ck, and a
parameter vectorθ specifying a probability distribu-
tion over the members ofΓ. The probabilities sum
to one.

M = (Γ,θ)(7)

Γ = [c1,c2, . . . ,ck](8)

θ = [P(c1),P(c2), . . . ,P(ck)](9)
k

∑
i=1

P(ci) = 1(10)

To select the tree cut model that best fits the
data, Li and Abe employ the Minimum Description
Length principle (Rissanen, 1978), a principle of
data compression and statistical estimation from in-
formation theory. A probability model is character-
ized by the code length in bits required to describe

the model itself (model description length) and the
data observed through it (data description length).

A model nearer the root of the hierarchy tree is
simpler and fits the data less well than a model
nearer the leaves, which is more complex but fits
the data better. The best probability model is the one
which minimizes the sum of the description lengths.

Given a data sampleS, encoded by the tree
cut model M̂ = (Γ, θ̂) with tree cut Γ and esti-
mated parameterŝθ, the total description length in
bits L(M̂,S) is computed by equation (11):

L(M̂,S) = log|G|+ k
2

log|S|
− ∑

n∈S

logPM̂(n|v, r)(11)

|G| denotes the cardinality of the set of all possi-
ble tree cuts,k is the number of classes on the cutΓ,
and|S| is the sample size.

The probability of a noun,PM̂(n|v, r), is esti-
mated by distributing the probability of a given class
equally among the nouns in it:

(12) ∀n∈ c : PM̂(n|v, r) =
PM̂(c|v, r)

|c|
2.5 Similarity-Class Measure
Unlike the previous two approaches, for which the
ontology is crucial to determine a selectional pref-
erence profile for a verb, Clark and Weir (2002) de-
veloped a method which is mainly concerned with
estimating the probability of a single noun in a given
relation to a verb. For this, they also employ a se-
mantic hierarchy, but the main use of it is to over-
come the sparse data problem. The idea is to de-
termine an adequate level of generalization in the
hierarchy using a chi-square test and to apply this to
estimate the probability.

2.5.1 Class-Based Probability Estimation
Let c′ denote a hypernym of conceptc, andc′ the
set of concepts dominated by conceptc′, includ-
ing c′ itself. Clark and Weir suggest a way to use
c′ to estimateP(c|v, r). They explain that calculat-
ing P(c′|v, r) is not a good solution; this probabil-
ity would be obtained by summing over the con-
cepts in the set, and is likely to be much greater than
P(c|v, r):
(13) P(c′|v, r) = ∑

c′′∈c′
P(c′′|v, r)



Instead, they show that the set of concepts can
be used as a condition in the probabilityP(v|c′, r).
They prove that this probability can remain con-
stant when moving up in the hierarchy; during the
generalization process (see Section 2.5.2), the top-
most probability which does not differ significantly
is sought.

By Bayes’ theorem, this probability can be used
to computeP(c|v, r):

(14) P(c|v, r) = P(v|c, r)P(c|r)
P(v|r)

To ensure that the estimates form a probability
distribution over the concepts of the hierarchy, a
normalization factor is introduced. This leads to the
final formula for thesimilarity-class probability Psc:

(15) Psc(c|v, r) =
P̂(v|[c,v, r], r) P̂(c|r)

P̂(v|r)

∑c′∈C P̂(v|[c′,v, r], r) P̂(c′|r)
P̂(v|r)

[c,v, r] denotes the class chosen for conceptc in re-
lation r to verbv, P̂ denotes a relative frequency es-
timate, andC the set of concepts in the hierarchy.
Again, since we are not dealing with word sense
disambiguated data, counts for each noun are dis-
tributed evenly among all senses of the noun (see
equations (5) and (6)).

2.5.2 Generalization
Given a conceptc in positionr of verbv, the gener-
alization procedure determines a suitablesimilarity-
classc′. The procedure begins at the hierarchy’s leaf
level by assigning conceptc to a variabletop. Then
successive hypernyms ofc are assigned totop until
a node is reached where the probability of the set of
concepts dominated bytopdiffers significantly from
the probabilities of the sets of concepts dominated
by top’s sister nodes. In that case,top is returned as
the result of generalization.

A chi-square test is used to determine ifP(v|c′, r)
changes significantly by moving up a node in the
hierarchy. The null hypothesis is that the probabil-
ities P(v|ci , r) are the same for each childci of c′.
If there is no significant difference between them,
the null hypothesis is accepted andP(v|c′, r) can be
taken as an approximation of its child classes. On
the other hand, if a significant difference is found,
the null hypothesis is rejected and a good approxi-
mation cannot be proven.

There are two statistical tests available, the Pear-
son chi-square statisticχ2 and the log-likelihood

chi-square statisticG2. Clark and Weir discuss
which statistic is more adequate for the task at hand;
they conclude that there is no common agreement in
the literature, and thus this should be decided on a
per-application basis. Another parameter to set is
the α value which determines the level of signifi-
cance for the calculatedχ2 or G2 test statistic. In the
subsequent experiment, we follow Clark and Weir’s
suggestion to compare results across different val-
ues ofα and choose the one that maximizes perfor-
mance.

3 Eliciting Human Judgments on
Selectional Preferences

3.1 Materials and Design
3.1.1 Co-occurrence Triples
The research reported in this paper was conducted
on a corpus consisting of the text of five vol-
umes (1995 to 1999) of the German newspaper
Süddeutsche Zeitung. It comprises 179 million to-
kens.

The corpus was parsed usingSMES, a robust in-
formation extraction core system for the processing
of German text (Neumann et al., 1997). This system
combines shallow processing techniques, e.g., finite
state regular expression recognizers, with generic
linguistic resources like a morphology component
and a subcategorization dictionary.

SMESincorporates a set of modules to process
text. Firstly, a tokenizer maps the text into a stream
of tokens. In the stage of lexical processing, the to-
kens are analyzed morphologically; nominal, adjec-
tival, and verbal compounds are detected, and part-
of-speech tags are assigned. During syntactic pro-
cessing, the chunk parser module identifies phrases
and clauses by means of finite state grammars.

In a third step, verbal grammatical relations are
recognized. A large subcategorization lexicon is ex-
ploited, which contains 11,998 verbs and a total of
30,042 subcategorization frames (Buchholz, 1996).
It also provides information about verbal arity, case
of NP complements, and the various types of sen-
tential complements a verb may take.

From the output ofSMES,co-occurrence triples
of the form 〈v, r, n〉 were extracted for the three
grammatical relations subject, direct object, and PP
object. In order to reduce the risk of ratings being
influenced by verb/noun combinations unfamiliar to
the participants, we removed triples that had a verb
or a noun with frequency less than one per million.



We conducted an evaluation of the grammatical
relation recognition component ofSMESwhich in-
dicated a precision of 55.1% for the subject triples,
50.0% for the direct object data, and 58.3% for the
PP object triples.

3.1.2 Construction of Experimental Stimuli
Ten verbs were selected randomly for each gram-
matical relation. The dependent nouns of each verb
were split into three “probability bands” according
to frequency. For each verb, a high, middle, and low
frequent dependent noun was chosen randomly.

Therefore, the experimental design consisted of
the factors grammatical relation (Rel), verb (Verb),
and probability band (Band). The factorsRel and
Band had three levels each, and the factorVerb
had 10 levels. This yielded a total ofRel×Verb×
Band= 3×10×3 = 90 stimuli.

The 90 verb/noun pairs were paraphrased to cre-
ate sentences. For the direct/PP object sentences,
one of ten common human first names (five female,
five male) was added as subject where possible, or
else an inanimate subject which appeared frequently
according to the corpus data. The stimuli sentences
of the verbschmiedenare shown in (16), sorted by
descending corpus frequency of the verb/object pair,
which is given in brackets after the sentence.

(16) (a) Peter
Peter

schmiedete
forged

einen
a

Plan. [30×]
plan.

(b) Peter
Peter

schmiedete
forged

eine
an

Allianz. [8×]
alliance.

(c) Peter
Peter

schmiedete
forged

ein
an

Instrument. [1×]
instrument.

3.2 Procedure
A magnitude estimation experiment was conducted
to obtain judgments on the resulting 90 sentences.
Magnitude estimation is an experimental paradigm
commonly used in psychophysics to obtain judg-
ments on sensory stimuli (Stevens, 1975). Psy-
cholinguistic studies have shown that this technique
is also applicable to the elicitation of linguistic judg-
ments (Gurman Bard et al., 1996; Lapata, 2000; La-
pata et al., 2001).

Magnitude estimation requires subjects to assign
an arbitrary number to a reference sentence, and
judge all following stimuli proportionally to the ref-
erence value. Thus, subjects are free to choose their

own rating scale and are not limited to pre-defined
ordinal scales.

The experiment was administered over the Inter-
net. The participants used their Java enabled web
browser to access a server running the WebExp soft-
ware V. 2.1 (Keller et al., 1998). The experiment
was self-paced, and response times were recorded
to be able to check them for anomalies. A session
lasted approximately 20 minutes. The subjects first
read a page of instructions and completed a demo-
graphic questionnaire. The main experiment con-
sisted of a training phase, a practice phase, and a
test phase.

The instructions web page contained general in-
formation about the experiment and the software
prerequisites necessary for participation. Introduc-
tory information familiarized the subjects with the
concept of magnitude estimation. The upcoming
phases of the experiment were described.

During the training phase, subjects were asked to
judge the length of five lines relative to a reference
line. In the practice phase, they were exposed to a
sample reference sentence and six practice stimuli
constructed like the ones for the main experiment.

After this preparation, the subjects did the actual
experiment. They gave a value to the reference sen-
tence (17) and judged the 90 stimuli afterwards. The
stimuli were presented in random order, with the
constraint that no two verbs with the same subcate-
gorization frame followed each other.

(17) Thomas
Thomas

programmierte
programmed

das
the

Chaos.
chaos.

3.3 Subjects
Sixty-one volunteers completed the experiment, all
native speakers of German. The subjects were re-
cruited over the Internet by an announcement on
the Language Experiments Portal web page1 and by
postings to relevant newsgroups and mailing lists.

4 Modeling the Judgments
We implemented the methods for selectional prefer-
ence acquisition which were outlined in Section 2.2

The algorithms’ input were the triple data that had
already been extracted for the selection of the ex-
periment’s materials (cf. Section 3.1.1).

1http://www.language-experiments.org/
2For Clark and Weir’s algorithm, we adapted an existing im-

plementation by Frank Keller and Mirella Lapata from Word-
Net to GermaNet. We are grateful for their permission to let us
use their source code as a basis.



The implementation uses the noun taxonomy of
GermaNet, and the information encoded in it in
terms of the hyponymy/hypernymy relation. The
GermaNet noun hierarchy (version 3.0 of January
29, 2001) contains 23,053 noun synsets.

4.1 Adaptations for Use with GermaNet
For the implementation of Li and Abe’s (1998)
method, certain modifications to the original Ger-
maNet hierarchy are required. The algorithm oper-
ates on a tree, but the GermaNet noun hierarchy is a
directed acyclic graph (DAG). As suggested by Li
and Abe, each subgraph having multiple parents is
copied to transform the DAG into a tree.

A further modification is necessary because in
GermaNet, nouns do not only occur as leaves of
the hierarchy, but also at internal nodes. Following
Wagner (2000) and McCarthy (2001), a new leaf is
created for each internal node, containing a copy of
the internal node’s nouns. This guarantees that all
nouns are present at the leaf level.

Finally, the algorithm requires a single root node
for the hierarchy. For WordNet and GermaNet, an
artificial concept〈root 〉 has to be created and con-
nected to the existing top-level classes. WordNet
(Version 1.7) incorporates nine suchunique begin-
ners, e.g., 〈entity 〉, 〈psychological feature 〉,
or 〈abstraction 〉. From any noun synset below
the top-level, the hypernym pointers can be fol-
lowed to a unique beginner.

On the other hand, GermaNet’s noun hierarchy
contains 502 synsets without a hypernym. 377 of
these have no hyponym, and are thus not linked into
the hierarchy by the hyponymy/hypernymy relation
at all, but rather by meronymy/holonymy. This
leaves 125 root classes with no mother node and one
or more daughters.

A high number of classes below〈root 〉 effects a
high model description length at this level. Con-
sequently, the generalization process leads to a
high amount of tree cuts consisting only of〈root 〉,
which are cheaper because of the lower model de-
scription length, but do not offer interesting infor-
mation about the selectional preferences of a verb.
To explore this effect, we set the number of classes
below〈root 〉 as a parameter (see Section 4.2).

4.2 Parameter Settings
Except for the frequency-based approaches, there
was a choice of parameters to set when computing
the preference value for a given verb/noun pair, as il-
lustrated in Table 1. For selectional association, the

SelA TCM SimC

highest mean

highest mean G2 χ2 G2 χ2

highest/ 125/49/40/33 clas- α = .0005/.05/
mean ses below〈root 〉 .3/.75/.995

Table 1: Explored parameter settings

choice was between the highest value, as suggested
by Resnik, and the mean value over all classes.

In regard to the tree cut models, again highest and
mean value were computed, which differed when
a noun had more than one parent class on the cut.
Furthermore, as described in Section 4.1, we varied
the number of classes below the artificial concept
〈root 〉. We excluded from the hierarchy classes
with less than or equal to 10, 20, and 30 hyponym
classes. This resulted in 49, 40, and 33 classes be-
low 〈root 〉. We also experimented with the 125
classes having at least one hyponym.

Finally, for Clark and Weir’s approach, there was
a choice between highest and mean value when a
noun was ambiguous, betweenχ2 andG2 statistic
for the chi-square test, and between fiveα values
for the respective test’s level of significance (.0005,
.05, .3, .75, and .995).

5 Results
The human judgment data were first normalized by
dividing each numerical judgment by the modulus
value which the subject had assigned to the refer-
ence sentence. This operation creates a common
scale for all subjects. Then the data were trans-
formed by taking the decadic logarithm. This trans-
formation ensures that the judgments are normally
distributed and is standard practice for magnitude
estimation data (Gurman Bard et al., 1996). All
analyses were conducted on the normalized, log-
transformed judgments. The computed preference
values were also log-transformed.

Correlation analyses were performed to assess
the degree of linear relationship between the human
judgments as the dependent variable and the algo-
rithms’ selectional preferences with each of the pos-
sible parameter settings, corresponding to 30 differ-
ent independent variables. We examined the sub-
ject, direct object, and PP object sentences in isola-
tion as well as at the 90 sentences altogether. Table 2
lists the best correlation coefficients per preference
measure, indicating the respective parameters where



Rating Freq CondP SelA TCM SimC

SUBJ .386∗ .010 .408∗ .281 .268
[highest] [mean, 40 c.b.r.] [mean,G2, α = .75]

OBJ .360 .399∗ .430∗ .251 .611∗∗∗
[mean] [mean, 40 c.b.r.] [highest,G2, α = .05]

PP-OBJ .168 .335 .330 .319 .597∗∗∗
[mean] [mean, 33 c.b.r.] [highest,G2, α = .3]

overall .301∗∗ .374∗∗∗ .374∗∗∗ .341∗∗∗ .232∗
[highest] [mean, 40 c.b.r.] [highest,G2, α = .3]

∗p≤ .05 ∗∗p≤ .01 ∗∗∗p≤ .001 c.b.r.: classes below〈root 〉

Table 2: Best correlations between human ratings and selectional preference models

appropriate. For each grammatical relation, the op-
timal coefficient is emphasized.

The preference measures performed differently
well for the three grammatical relations in question.
Selectional association (SelA) is the best to model
judgments on subjects, closely followed by the sim-
ple frequency measure (Freq). The similarity-class
method (SimC) yields middle correlations for the
direct object relation as well as for the PP object
relation.

The highest overall correlation is revealed by
conditional probability (CondP) and SelA, closely
followed by the tree cut models (TCM). CondP as
expressed in (2) outperformed (1), and therefore the
latter was excluded from further comparisons.

Regarding the parameter settings, TCM seems to
work best with the mean preference value and 40
classes below〈root 〉, and SimC yields optimal re-
sults using the highest value and theG2 statistic.

6 Discussion
There is no single method which outperforms all the
others; each algorithm has its strengths and weak-
nesses. Also, the more sophisticated class-based
approaches to selectional preference acquisition do
not always achieve better results than the frequency-
based ones which do not use an ontology.

Although all measures are positively correlated
with the human judgments, several of them do not
reach significance. Especially, CondP cannot pre-
dict subject preferences, and the frequency measure
is not suitable for PP objects.

SimC is clearly the optimal predictor for direct
objects and PP objects. The tie between verbs and
their subjects is less strong than that between verbs
and the other arguments; therefore, selectional pref-
erences for subjects are harder to model, which is
reflected in the results.

TCM does not reach significant results for any
of the individual grammatical relations. This might
be due to the fact that the GermaNet noun hierar-
chy, incorporating 23,053 noun synsets, is consider-
ably smaller than the one of WordNet (version 1.7),
which includes 74,488 synsets, and is reduced even
more by the parameter for classes below〈root 〉.

Overall, the results indicate that the explored ap-
proaches to selectional preference acquisition are
indeed valid for a language other than English and
that they work for grammatical relations other than
direct object.

7 Further Research
The correlations found in the evaluation of the ap-
proaches to selectional preference acquisition were
reasonably high, but there is still room for improve-
ment. The results show that different methods are
suited for different argument relations. Therefore, it
seems promising to explore model combination us-
ing multiple regression to obtain a better fit with the
experimental data.

It can be expected that the preference values be-
come more adequate if the quality of the input data
is improved, so other ways for grammatical relation
recognition could be investigated, e.g., the statisti-
cal grammar model described by Schulte im Walde
et al. (2001).

Finally, we plan to consider other approaches
to selectional preference acquistion: Abney and
Light’s (1999) hidden Markov models as well as
Ciaramita and Johnson’s (2000) Bayesian belief
networks. We also intend to vary the size of the
taxonomy and explore the effects on the computed
selectional preference values.
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